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Summary. We explain in detail the so-called Bargmann or holomorphic repre- 
sentation, and apply it to the general class of single-mode bosonic field theories. 
Since these model field theories have no attribute of separability and are, in some 
sense, maximally nonlocal, they are an especially severe test of the capability of 
coupled cluster methods to parametrize them satisfactorily. They include the 
cases of anharmonic oscillators of order 2 K (K = 2, 3 . . . .  ), for which ordinary 
perturbation theory is known to diverge, and we therefore make a special study 
of such systems. We demonstrate for the first time for any quantum-mechanical 
problem with infinite Hilbert space that both the normal and extended coupled 
cluster methods (NCCM and ECCM) have phase spaces which rigorously exist. 
We analyze completely the asymptotic properties of the complete sets of the 
NCCM and ECCM amplitudes, either of which fully characterizes the system. It 
is thereby shown how the holomorphic representation can be used to regularize 
completely all otherwise formally divergent series that appear. We demonstrate 
in detail how the entire NCCM and ECCM programmes can be carried through 
for these systems, including the diagonalization of the classically mapped Hamili- 
tonians in the respective classical NCCM and ECCM phase spaces. 
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1. Introduction 

As several other articles in the present volume attest (and see, e.g., Refs. [1, 2] 
for reviews), the techniques of coupled cluster (CC) theory have become widely 
used in both chemistry and physics. Some of their particularly attractive features 
are their versatility, their incorporation of systematic hierarchies of approxima- 
tion schemes, and the high numerical accuracy of the results that ensue from 
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even relatively low-order such implementations. Indeed, the coupled cluster 
method (CCM) in both its so-called normal (NCCM) and extended (ECCM) 
manifestations [2-5], has established itself as such a universal, high-precision 
tool in microscopic, ab initio quantum many-body theory, that is has become 
relevant to address such fundamental issues as the actual existence and conver- 
gence properties of its respective parametrizations. We stress from the outset that 
such questions need ultimately to be addressed for all formulations of quantum 
many-body theory or quantum field theory. It is precisely because of the power 
and universality of the NCCM and ECCM parametrizations that the present 
analysis is now both possible and~of real interest. We remark also that we know 
of no comparable analysis for afiy of the alternative general-purpose microscopic 
formulations based on variational, perturbative, or other techniques. 

In the present analysis, our basic mathematical tool is the so-called Barg- 
mann or holomorphic representation [6]. This provides a means whereby a 
bosonic quantum field theory, defined in some appropriate Hilbert space, is 
mapped into an essentially classical field theory of complex functions in a certain 
normed space, namely the Bargmann Hilbert space. One of the very attractive 
features of this mapping is that we may then bring to bear on the problem all of 
the very powerful techniques of the theory of complex functions. With this 
approach in mind, we therefore seek to apply the holomorphic representation to 
the CC parametrizations of the simplest possible bosonic field theory that is both 
nontrivial in itself, and which is capable of illustrating the basic features of the 
more general cases. With the problem thus stated, an obvious candidate presents 
itself, namely the anharmonic oscillator or, more generally, the class of one-body 
Schr6dinger problems in one dimension (l-d) with arbitrary potential V(x). 

It is clear that such systems are numerically most easily studied using the 
ordinary coordinate-space one-particle Schr6dinger wave function ~(x). The 
motivation for using more general field theoretical methods is therefore not 
justified by easiness of application or by accuracy of numerical results. Neverthe- 
less, there are many reasons to exercise the general methods against such simple 
models. Firstly, they provide (0 + 1)-dimensional analogues of the corresponding 
(d + 1)-dimensional quantum field theories in d space (and one time) dimensions. 
For example, the quartic anharmonic oscillator is the analogue of ~b4-field 
theory; and the sinusoidal (band-theory) potential well, V(x) = k( 1 - c o s  x), is 
the analogue of sine-Gordon field theory. Secondly, even such very simple 
models as the pure quartic anharmonic oscillator, V(x)= k x  4 with k > 0, are 
very interesting in their own right, since it is known that ordinary Rayleigh- 
Schr6dinger perturbation theory performed about the corresponding harmonic 
oscillator as the unperturbed system, diverges for all values of the coupling 
constant k, however small [7]. In the pioneering studies of Bender and Wu [7] 
precisely this feature is considered valuable with regard to realistic field theories 
where perturbation expansions also typically diverge. Indeed, the asymptotic 
behaviour of the high-order perturbation coefficients in the expansions of 
physical properties is presently qualitatively known even for many realistic field 
theories, including QED, and they share properties similar to the anharmonic 
oscillator. Thirdly, when considered as interacting field theories, models like the 
anharmonic oscillator are rather exotic and highly singular, in the sense of being 
maximally nonlocal rather than local. They therefore provide a very stringent 
test for CC methods, which have been deliberately designed to incorporate the 
linked-cluster properties of normal physical systems exhibiting the usual locality 
and separability attributes. A fourth reason for studying single-mode field 
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theories is that their Bargmann representations then involve functions of only a 
single complex variable z, rather than of several variables, or, more generally, 
functionals of a complex-valued field z(x). The corresponding mathematics is 
thus much more familiar and more accessible. 

A fifth and final reason for our interest in such single-mode bosonic field 
theories as the quartic anharmonic oscillator is that this particular model has 
already received considerable attention in terms of CC techniques, although from 
an essentially different, albeit related, viewpoint [8]. Thus, both the NCCM and 
ECCM are usually implemented in practice in the so-called SUB(n) truncation 
scheme, in which only those basic amplitudes are retained which describe the 
excitations of at most n particles out of the chosen model state, and the 
remaining amplitudes describing clusters of more than n particles are set to zero. 
Unlike in the comparable SUB(n) truncation of the configuration-interaction 
method (CIM), for which an increase in the truncation index n is guaranteed to 
lead to more accurate (or, in the worst case, identical) estimates for the ground- 
and excited-state energies, due to the well-known interlacing (or Hylleraas-Und- 
heim) theorem, no such variational or other theorem is known to exist for either 
the NCCM or the ECCM. 

Accordingly, there has been much interest in investigating the convergence 
properties of the series of nth-order estimates for a given physical quantity, such 
as the ground-state energy, as the truncation index n is increased. One of the 
attractions of the quartic anharmonic oscillator, for example, is that the model 
is sufficiently simple for numerical calculations to have been performed in 
SUB(n) approximations for values of n as high as about 30. Unfortunately, the 
results of all such numerical calculations to date are somewhat inconclusive. 
Nevertheless, there are clear indications that after very rapid initial convergence 
to very accurate energy-level estimates, for all values of the anharmonic coupling 
constant, for n ~< 8, the rate of convergence slows down dramatically for higher 
values of n, and indeed generally starts to show the oscillatory behaviour typical 
of asymptotic expansions. 

From the above standpoint, we stress that the convergence properties of 
interest in the present work are not those of the SUB(n) sequences for given 
physical quantities. Rather, we are now concerned with the behaviour of the 
exact amplitudes which fully parametrize the system, namely {sn, gn } in the 
NCCM and {an, an } in the ECCM, as the index n ~ oo. One of our main 
findings is that both CC parametrizations actually require us to extend the usual 
Hilbert space of normalizable wave functions to a more general linear vector 
space. (Indeed, we note that this is certainly also true in SUB(n) approximations 
for n > 2, for which it is very easy to prove that all such approximate wave 
functions have infinite norms.) 

An important corollary of the above is that formally divergent series for 
various quantities in the theory appear, when expressed in terms of the basic CC 
coefficients {sn, Sn} or {an, 6n }- Nevertheless, by the use of the holomorphic 
representation, we are able to show how such series can be regularized to be 
given precise, but generally non-unique, interpretations. It seems that the intrin- 
sically nonlinear CC parametrizations necessarily lead to mappings of the 
original quantum field theory in its Hilbert space onto a corresponding multi- 
configurational classical field theory, which while certainly exact, are one-to- 
many rather than one-to-one. Nevertheless, this subsequent non-uniqueness of 
the CC coefficients has no effect on any such physically observable quantity as 
the expectation value of an arbitrary operator. One of the important outcomes 
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of our study is that it provides a very complete analysis of the asymptotic 
structure of all of the various CC amplitudes which fully and exactly characterize 
the system. It is clear that some details in the present results are rather 
system-specific, and reflect the fact that the present system as a field theory has 
no attributes of locality. The more interesting cases which must form a challeng- 
ing project for the future are the theories in d spatial dimensions with d/> 1. 
Nevertheless, this is the first time that exact asymptotic results have been derived 
in any CC framework, although many other NCCM applications exist (for a 
review see [2]). In particular, these include several detailed numerical calculations 
of anharmonic oscillators [8] in various SUB(n) approximations. We stress again 
that the main aim of the present work is to examine analytically the exact 
asymptotic properties of the various CC schemes rather than to investigate the 
numerical accuracy of actual finite truncations. 

Finally, we emphasize that the CC methods in their variational formulation 
map the quantum mechanical problem into a classical canonical Hamiltonian 
problem in a sympletic manifold or phase space. In particular, the canonical 
coordinates in the ECCM phase space are fully quasilocal, and each of them 
represents the sum of a well-defined infinite set of connected diagrams. In this 
respect the methods are distinctively different from such other previous ap- 
proaches as those which are mentioned in Ref. [7]. For example, the method of 
Truong is based on the Weyl representation of the Schr6dinger wave function, 
and is thus close to the coherent-state expansion. Nevertheless, such representa- 
tions essentially afford a reformulation for the quantum theory and are not 
strictly equivalent to a quasilocal classical canonical formalism of the sort that 
we are presently interested in. 

The outline of the remainder of the paper is as follows. In Sect. 2 we 
introduce the main elements of the Bargrnann representation of an arbitrary 
state of a single-mode bosonic field theory, and in Sect. 3 we then derive the 
corresponding holomorphic representation of both the NCCM and ECCM 
parametrizations of this model. In Sect. 4 we discuss the analytic properties of 
the various CC amplitudes and their Fourier transforms, and introduce the 
average value functional. In Sect. 5 we consider a system which is infinitesimally 
displaced from the equilibrium, and use the holomorphic wave functions of the 
excited states, assumed to be known, to derive the forms of the various CC 
amplitudes. This allows us to obtain the diagonalized nonlinear expansions for 
the classically mapped CC Hamiltonians in their respective phase spaces. Finally, 
Sect. 6 summarizes our results. 

2. Coherent states and the Bargmann representation of arbitrary states 

We consider a one-body Schr6dinger quantum-mechanical problem in one space 
dimension x ~ ( - c~, ~),  with Hamiltonian: 

= + 

where the factor w/2 in the potential V has been inserted for later convenience. 
The position operator ~ (~x)  and its canonically conjugate momentum operator 

( - - * -  i d / d x )  are conventionally mapped onto their canonical Fock-space cre- 
ation and destruction counterparts by: 

a* = (~ -- i~ ) /x /~ ,  a = (~ + i~ ) / x /~ .  (2) 
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They are thus easily seen to obey the usual bosonic canonical commutation 
relation (CCR): 

[a, a t] = L (3) 

The corresponding (normalized) vacuum state [~b) defined by: 

alq~> =0, (4) 
now plays the role of model state or cyclic vector. It is simply the ground state 
of the harmonic oscillator Hamilitonian: 

H o = ½/3z + 122 = ata + ½, (5) 

and it has the usual Gaussian form for its coordinate-space representation: 

( X [ ( ~ )  ~ ~ (X)  = 7~ -1/4 exp( -½x2); (~b [~b) = 1. (6) 

For such single-mode field theories, the complete set of orthonormal multi- 
configurational creation operators with respect to [q~) are simply the n-boson 
creation operators, (n!)-l/2(at) n. From present purposes it is actually more 
convenient to work directly with their unnormalized counterparts, (at) n, and to 
use the manifest normalization condition: 

( m l n ) = 6 , , , ;  In)-(n!)-U2(a*)"[c~), (7) 

as needed. It is clear that arbitrary ket and bra states in the Fock space may now 
be represented in the CIM form as: 

[g> --- g(at)l~b>, <f*l = <~ If(a) = [f*(at)I~b >]t -- ( [j~>)t; 
(8) 

g ( z ) ~  ~ gn Zn, f(z) ~ ~ fn Zn, 
n=O n=O 

where, as usual, an asterisk denotes complex conjugation. 
The remaining ket eigenstates [z > of the operator a: 

alz )  = z lz ) ,  (9) 

where z is an arbitrary complex number, also play a fundamental role. They are 
the well-known Glauber coherent states. Their normalized forms are easily 
constructed from the defining relation of Eq. (9) as: 

Iz> = e(Za*-:*a)l 4~) = e -½1=l~ eza*l(a>, (10) 

the first form of which easily manifests the normalization, ( z [ z ) =  1, and 
the second form of which follows from the first by a trivial use of the 
Baker-Campbel l -Hausdorff  theorem for any two operators A and B which 
separately commute with their own commutator: 

eA+S=eAeSe-½t'~,sl; [A,[A,B]] = 0 = [[A, B], B]. (11) 

We thus also see that the Glauber coherent states are simply the SUB(l) class of 
CC ket states with respect to Iq~) as the model state. By making use of Eq. (2), 
and Eq. (11) for :~ and/3, it is easy to verify from Eq. (10) that the coherent 
states have the coordinate-space representation: 

<xlz> =,~-¼exp(-½1zl 2-'2~z + x/2xz-½x2). (1.2) 
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It is also quite straightforward to verify that they satisfy the well-known 
completeness and inner-product relations: 

I = -  dazlz><zl = dxlx><xl, (13) 
7[ 

<z Iz'> = exp(-½lz 12- ½]z'l 2 + z*z'). (14) 

Equation (13) is perhaps most easily proven by taking matrix elements between 
arbitrary members In> and <m I of the complete basis given in Eq. (7). We also 
note from Eq. (14) that the arbitrary states of Eq. (8) have the coherent-state 
representations: 

(z[g)  = g(z*) e -½1z12, ( f*  ]z) =f(z)  e -½1z12. (15) 

The CCR algebra of Eq. (3) is now represented in the Bargmann space by 
the algebra: 

a*~z, a~d/dz, (16) 

of the complex variable z and its derivative. Arbitrary states in the Fock space 
now have the equivalent holomorphic or Bargmann representations: 

f ( a ) g ( a * ) [ ~  ) - h(a*)[4~) ~ f ( d / d z ) g ( z )  = h ( z ) ,  

(q~ [f(a)g(a*) = (~ [~(a) ¢~- g(d/dz)f(z) =//(z). (17) 

The original single-mode bosonic field theory is thereby mapped into the 
corresponding (classical) field theory of a complex function in a particular 
normed space, namely the Bargmann Hilbert space [6]. Various forms for the 
inner product between two arbitrary states may now be constructed, amongst 
which we include the following: 

lfd2ze-bzl2f(z)g(z*) lfd2ze-lzlif(z*)g(z) (18a) ( F i g )  ~ 

= f ( d / d z ) g ( z )  Iz = o = g ( d / d z ) f ( z ) I z  = 0 (18b)  

= ~ n~,gn. (18c) 
n = 0  

Thus, Eq. (18a) is readily proven by insertion of a complete set of coherent states 
from Eq. (13), and by making use of Eq. (15). Equation (18c) follows both from 
Eqs. (7) and (8), and also directly from Eq. (18a) by making use of the following 
elementary integral over the entire complex plane: 

1 
[ d2z zm(z*)  n e -Izl2 n!t~mn. (19) 

7~ 3 
Finally Eq. (18b) follows both from Eq. (17), and also from the power series 
expansions of Eq. (8) as another way of writing Eq. (18b). 

It is now very important to realize that if the two above states (f*[ and Ig> 
are normalizable, then Eq. (18a) implies that both functions f(z) and g(z) must 
be holomorphic or entire functions of order 0 ~< 2 (and of type z ~< ½ in the 
limiting case ~ = 2). It is for this reason that the Bargmann representation is 
otherwise known as the holomorphic representation. Furthermore, in this case it 
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is not difficult to show that each of the three relations of Eqs. (18a)-(18c) yields 
the same (convergent) result. On the other hand, differences can arise when the 
Hilbert space of normalizable wave functions is generalized to a larger linear 
vector space which encompasses states of infinite norm in terms of the standard 
metrics. As we shall later see, it is precisely such an extension which is 
necessitated by the CCM parametrizations of the state vectors, and which hence 
brings into question the meaning which may be associated with the divergent 
expressions which inevitably arise as a consequence. 

Before turning to the CC parametrizations of states, we first note that the 
ground-state Schr6dinger equation: 

Hl~O0) = E0lffo), (20) 

with the Hamiltonian of Eq. (1), may now be rewritten in terms of the CIM 
parametrization: 

lOo) = F°(at)l~b), (21) 

in terms of the following ordinary differential equation in the complex plane of 
the Bargmann space: 

-¼(a/az - z)2r°(z) + V(d/az + z)F°(z) = Eor°(z). (22) 
By writing F°(z) in the form: 

F°(z) - e-½Z2f°(z), (23) 

Eq. (22) can be equivalently written in the somewhat simpler form: 

- dzz - z f°(z)  + V f°(z) = Eof°(z). (24) 

Finally, we note that the relationship between the Schr6dinger representa- 
tion, ~,(x)= (xl•) ,  of an arbitrary wave function I ff), and its holomorphic 
representation F(z): 

]0)  = F(at)lq~), r ( z ) -  ~ F,z", (25) 
n = 0  

is a relatively simple linear one. Thus, by considering the overlap (z*]~,), by 
inserting into it a complete set of position eigenstates as in Eq. (13), and by 
making use of the coordinate-space representation of the coherent states from 
Eq. (12), it is straightforward to derive the Fourier-like mapping: 

F(z) = re-¼ e-½Zz ; ~  dx exp(.v/2zx - ½x2)lp(x). (26) 

Similarly, by considering the Fourier transform of Eq. (26), or by likewise 
considering the overlap (x ]~ ) and inserting a complete set of coherent states as 
in Eq. (13), one may also derive the two equivalent inverse relations to Eq. (26), 
namely: 

2-½1r '~ e ½xz f ~ d~l exp( - ix /~x ,  i 2 F i O(x) = --Sq ) (q), (27a) 

=~z e-½ x2 d2zexp(--]zl2--½z2+x/~xz)f(z*) .  (27b) 
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Having thus introduced the Bargmann representation of an arbitrary state 
parametrized in its CIM form, it is then natural to extend the discussion to the 
corresponding NCCM and ECCM parametrizations. This we now do in Sect. 3. 

3. Holomorphic representations of the CC operators 

In the CCM we usually choose for convenience the intermediate normalization 
scheme in which: 

(c~ 1~ ) = .I~ dx 4~(x)q;(x) = 1, (28a) 

which, from Eq. (25) implies the relation: 

Fo = 1. (28b) 

It is also convenient to introduce the notation: 

(~[ -- U-2(~ l  - (~p [if(a); if(a) = U-ZF*(a), 
(29) 

N 2 - (~p 1~9) = j_~ dx I~(x)] 2 = (q5 IF*(a)F(a*)]c~). 

With this normalization, the usual CCM representation of the ket wave function 
I f f)  is given as: 

I~> =eS<°*)l~>, S(z)- ~ s.z", (30) 
n = l  

in terms of a creation operator S = S(a*), the cluster correlation operator, 
(which is more usually denoted as T in quantum chemistry). We thus have the 
simple relation: 

S(z) = In F(z), (31) 

which shows immediately that, unlike F(z), the function S(z) is not holomorphic. 
Instead, it is a multivalued function with branch points at each of the zeros of 
F(z). We remind the reader that in general an entire function of fractional order 
has an infinite number of such zeros in the complex plane. 

Furthermore, in the NCCM [2-5] the bra wave function (~[  is also 
parametrized independently in terms of a new destruction operator ~~ ~(a) as: 

<~[=-<(glS(a) e -s~"*', ~(z)- ~ SnZn; £o=1, (32) 
n = O  

which turns out (and see, e.g., Refs. [3-5]) to be canonically conjugate to S, and 
where the normalization ( f i l e )  = 1 from Eq. (29) implies the condition go = 1. 
From Eqs. (29)-(31) we thus have immediately the relation: 

(q5 [#(a) = N-Z(q~ IF*(a)r(at), (33) 

and hence from Eq. (17) we also have the Bargmann representation of S(z) 
directly in terms of F(z) as: 

S(z) = N -  2F(d/dz)F*(z). (34) 

We may also similarly relate ~(z) to the Schr6dinger wave function ~(x). 
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Perhaps the simplest way is as follows. Let us first define an average value of  an 
arbitrary operator O = O(a*, a) as: 

(O> -- O - ( f f lo l~ ,>  = N-2<~ ]F*(a)O(a*, a)F(a*)[(o>. (35) 

We then see immediately from Eq. (7) that the coefficients g, from Eq. (32) are 
given simply as: 

1 
S. = ~ <(at)n>, (36a) 

and hence that ~(z) is the moment generating function for powers of the creation 
operator at: 

g(z) = (eZa*>. (36b) 

Now, by inserting a complete set of position eigenstates from Eq. (13) into Eq. 
(36b), and by making use of Eq. (2), we easily find the result: 

= 1 [~ dx tp*(x) ez(x-d/dx)/x/2~l(X). (37) ~(z) 
l lt d - -  oo 

A trivial use of  the Baker -Campbel l -Hausdorf f  theorem of Eq. (11) in Eq. (37), 
then gives the desired final expression: 

S(z)  = 1N 2-a -¼z2 f ~-oz dx eZX/',/5~k*(x)~(x - z/w~2 ). (38) 

We turn out attention next to the ECCM parametrization of  ket and bra 
states. These are given initially in terms of  the previous N C C M  creation 
operators S = S(a*) and a new destruction operator S = Z(a) as: 

[ff )~--- e s(a*)[ q$ > = eS(a*) e -~(a)] ~9 >; 
(39) 

(lff[ = ((gle~(a) e -S(at), Z(z) =_ ~ 6n Zn. 
n = l  

A comparison of Eqs. (32), (36b) and (39) shows immediately that: 

27(z) = In ~(z) = ln(eZ"*>, (40a) 

and hence the coefficients {6n } are simply the connected averages of  the powers 
of  the creation operator at: 

1 
6. = ~ ((at)  ") . . . . .  • (40b) 

Thus, the relationship between the unlinked N C C M  coefficients {g. } and their 
linked ECCM counterparts {6n } is precisely that between the moments and the 
cumulants (or semi-invariants) of  a probability distribution. 

Finally, although the ECCM parametrization may be completely specified in 
terms of  the linked-cluster set of  coefficients {s., 6. }, it has been explained 
elsewhere [2-5] that just as the N C C M  operators are canonically conjugate to 
each other in a well-defined classical sense, so can we also define a new creation 
operator 27 = S(a t) canonically conjugate to 27 = 27(a), by the definition: 

S(at)l~b> - (I -[~b>(~b I)~q(a)S(at)lcb>, ~(z) - ~ a.z", (41a) 
n = |  
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and hence from Eq. (17) we also have the equivalent Bargmann representation: 

S(z) = S(d/dz)S(z)  - S(d/dz)S(z)lz=o. (41b) 

In this way, the ECCM parametrization is now given in terms of the complete set 
of amplitudes {cr,, ~, }, all of which are again of linked-cluster type, and where 
a, and c?, are canonically conjugate classical variables. Alternative expressions 
for 2;(z) and its coefficients {cr, } are easily derived from Eq. (41), namely: 

1 1 
tr,, = ~ (49 [N(a)a"S(a*)[49 ) = ~.. ~=o (m + n)!SmSm+n, 

S,(z) = (49 [S(a)(e =a -- 1)S(a*) 149 ). (42) 

It is clear once again that, like S(z), the function 2(z) is not necessarily an entire 
function. 

We note at this point that in general, due to the analytic properties of  the 
coml21ex functions S(z) and S(z), neither the ket state S(a*)149) nor the bra state 
(49 IS(a) is normalizable within the original Hilbert space. In turn, expressions 
like those in Eq. (42) therefore have to be handled with extreme care. For 
example, it is generally the case that the infinite sum in Eq. (42) which expresses 
the ECCM coefficients {tr n } in terms of their NCCM counterparts {Sn, Sn }, is 
formally divergent. It is one of the purposes of the remainder of this paper to 
show how meaning can be given to such expressions. As we shall see, such 
divergences typically arise from the incorrect expansion of  certain otherwise 
exact (convergent) integrals. In this sense the Bargmann-space representation 
techniques provide a definite regularization of these various divergent expres- 
sions. 

Before proceeding with the above programme, we end this Section with a 
discussion of the Bargmann-space representation of the expectation value O of 
an arbitrary operator O as given in Eq. (35). Firstly, in the CIM parametrization 
we clearly have: 

0 = N-2(49 IF*(a)O(a*, a)F(a)149) 

= F*(d/dz) O(z, d/dz)F(z)l~= o/F*(d/dz)F(z)lz = o .  (43) 

Similarly, in the NCCM parametrization we have: 

O = <49 IS(a) e-S(a*)O(at, a) eS(at~ 1 49 > 

= S(d/dz) e-S(z)O(z, d/dz) eS(z)lz = 0. (44) 

By formally expanding O(z, d/dz) as an ordered multinomial in z and d/dz, and 
by inserting a unit operator of the form I = eS(z) e -s(z) between every pair of 
operators in this expansion, we may make use of the trivial relations: 

d , e ±s(~) d eS(~ ) (45) 
dz =dzz + S (z)' 

to rewrite Eq. (44) in the equivalent N C C M  form: 

0 = N(d/dz)O(z, d/dz  + S'(z)). (46) 

In principle we may also write a counterpart to Eq. (46) for the ECCM 
parametrization, but this is cumbersome and not very enlightening for present 
purposes. 
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4. Holomorphic CC amplitudes and the average value functional 
for anharmonic oscillator systems 

We now specialize to an anharmonic oscillator of order 2 K with K = 2, 3 , . . . ,  
and take V(x/~;  ) = 1.~2+ U ( x / ~  ) with U ( x / ~ ) =  k.~ 2K. Thus: 

H = ~p' *2 ~_-,Tx,,2 + U(x/~2 ) = ½ + ata + k2-K(a t + a) 2K. (47) 

Due to the noncommutativity of d/dz and S'(z), expressions such as in Eq. (46) 
for the average value of an operator are useful in the first place only for deriving 
low-order explicit expressions for the average value functional. Since we are now 
interested rather in the exact qualitative properties of the ECCM parametriza- 
tion, we shall focus attention on the asymptotic analytic properties of the 
function F(z) and the other amplitudes needed in CCM. This is done in a 
sufficiently reliable way by WKB methods (indeed, the NCCM parametrization 
for the ket state is equivalent to a WKB representation for the holomorphic 
wave function). For the details of such analysis we refer to Refs. [9, 10], and only 
state the most important results below. 

1. All Bargmann eigenstates F"(z) (and thus also F") corresponding to 
Schr6dinger energy eigenstates ~,,(x), are entire functions of order 0 = 2 and 
type z = ½. Along the real axis (z = x) their leading behaviour is oc exp(-½x2). 

2. If  the eigenfunctions are represented as in Eq. (23), each f ' ( z )  is an entire 
function of order: 

K + I  
v = (48) 

K 

Along the imaginary axis they approach zero as: 

f"(iy) oc exp(-ellyIV); e l > 0 ,  y ~ _ + v o .  (49) 

3. A Fourier transform of F" (and thus also of if") can be defined along the real 
axis: 

F~F(q)= I ~ dxe  ~ i q X F n ~ x ~  ~ 

d - o r  
(50) 

t,|® dq e iqXF"F (q). 
F" (x )  = j_oo 

The function F'F(q) is again an entire function of q of order 2 and type 1, and on 
the real axis it decreases as oc exp(-½q2). 

4. If  F~(q) is again written as a product: 

F"~(q) = e-½q2zn(q), (51) 

then the leading behaviour of g.(q) along the real axis is: 

z,(q) oc exp(-~2lq[~), (q --+ +oo). (52) 

5. The function ~(z) of Eq. (38) for the ground state can be generalized for pairs 
of excited states: 

X Z  aXg, 42). (53) 
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All these functions are again entire functions of z of order K + 1 (as are also the 
Schr6dinger wave functions fin(z)), and they decrease along the real axis like 

exp( -~3Ix  IK--1). Incidentally: 

smn(O) = (~mn" ( 5 4 )  

In particular, ~o0 has no zeros on the real axis. 

6. The Fourier transforms of  sm"(x) are: 

S~"(q) = P"~ (q)Fn(iq). (55) 

For real values of q they behave asymptotically as in Eq. (52), but with a 
different constant. 

Let us now consider the average value functional for a more general state 
which is not an eigenstate of the Hamiltonian, but otherwise a sufficiently 
smooth linear combination of  them with qualitatively similar properties. Starting 
from Eq. (43) and expressing ff through its Fourier transform we obtain: 

O = f ~_~ ~ PF(q)(OF)(iq), (56) 

where (OF)(z) = O(z, d/dz)F(z) is another entire function of z. By the properties 
listed above this integral is bound to converge for any reasonably well-behaved 
operator O. The N C C M  form corresponding to Eq. (44) is now derived quite 
rigorously by observing Eq. (55): 

0 = ~ Se(q)F(iq)-l(OF)(iq) 

" I ~  -~SF(q)  e-S<iq)o(iq, --iOq)e s<iq). (57) 

This result could have also been written directly starting from Eq. (44). How- 
ever, by proceeding in the present order one is able to prove the convergence of 
the above integration and to give justification to such formal expressions and 
manipulations as in Eqs. (32)-(34)  or (44). 

Since S(z)= In F(z) and the ground-state F°(z) has an infinite number of 
zeros in the complex plane [9, 10], S(z) has an infinite number of logarithmic 
branch cut singularities. In particular, for the exact eigenstates Fn(z) the zeros 
asymptotically approach the imaginary axis. Therefore, whenever the values of  
S(z) are considered at the imaginary axis, a slight rotation is implicitly under- 
stood. In spite of  this complexity it is possible to define the Fourier transform of 
S(z) as follows: 

S(z) = j~_~ dx (e xz - 1)g(x), (58) 

where g(x) is a generalized function (i.e., a Schwartz distribution), which has a 
power-law singularity at the origin. It is entirely determined by the zeros of  the 
holomorphic wave function. 

Applying this representation to the definition of  the amplitude S from Eq. 
(41b), we obtain 

t ' l  

S(z) = [~ dx (e xz - 1)y(x); y(x) = g(x)g(x). (59) 
J-~ 
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For the cases studied in the present paper the functions S(x) and 7(x) decrease 
very rapidly for large Ix I--. oe. Therefore the integral in Eq. (59) converges for 
all z and defines S(z) as an entire function. 

The method applied here to represent the basic CC amplitudes is generalized 
to essentially arbitrary (but sufficiently well-behaved) systems in another article 
[5] in the present volume. 

A convenient method to calculate the average values of arbitrary operators in 
terms of the coupled cluster amplitudes was introduced in Refs. [9, 10], where an 
appropriate generating functional was constructed. Because we are now, however, 
interested in the qualitative exact properties of the CC mappings, and assume the 
system to be otherwise exactly known, a different and more straightforward 
approach is better justified. Given the original Hamiltonian in Eq. (47) the holo- 
morphic representation leads in the N C C M  parametrization to the expression: 

1 f~_~ ~ dq Sv(q) e-S(iq)U(iq - -  iOq)  e S(iq). (60) I~ = -~ + dx S'(x)xg(x) + L oo 2n 

This is given directly in terms of  the N C C M  amplitudes {S, S}, where we note 
that by Eq. (58) the moments of g(x) are identified as the amplitudes {Sn }. 

Our ultimate goal in the present article is to carry through the entire ECCM 
programme up to the point of deriving and proving the following general 
diagonalized CC expansion [ 11, 5] for states that are displaced from the stationary 
ground state [~o>: 

H = E o +  en~nO,+ Z k!/! 2 (ml"''mklRlnl"' 'nt> 
n= 1 k+t~3 {m}{n} 

X ~ml ' " " ~,-k~'n, " " " ~-,, (61) 

where en = En --E0 is the excitation energy of  the nth excited state, and where 
the amplitudes {0n, ~,  } are now the normal mode coordinates, and should not 
be confused with the previous wave functions 0n(x) and ~,(x). For this purpose 
the CC amplitudes (namely, either the set {sn, gn } or the set {~,, ~, }) must be 
expanded linearly in terms of the normal-mode coordinates [11, 5]. This will be 
the subject of  the next section. 

5. Expansion around the ground state 

For general infinitesimal displacements: 

6F(z) = ~ OnF"(z), 6if(z) = ~ ~nP'(z) 
n = l  n = l  

from the ground state the displacements of the CC amplitudes are uniquely and, 
as a matter of  fact, easily calculated as functions of the sets {On, ~n } and the 
known holomorphic eigenfunctions. Let us first consider the NCCM case. We 
obtain the expansions, accurate to first order in the amplitudes {~O,, ~n }: 

S(z) = S°(z) + ~ ~nX-(z), 
n = l  

(62) 

:~(z) = ~°°(z) + ~ [0n~0n(Z) + ~Tn#"0(z)l. 
n - 1  
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The coefficients in the Taylor expansions of S'(z), S°"(z) and S'°(z) provide the 
matrix elements q~, 2 of the canonical transformation into normal modes [5]. Part 
of them are already defined in Eq. (53). The others are: 

F'(z) F'(O) f ~  S'(z) - FO(z ) F0(0 ) ~ dx (e x~ - 1)g,(x), (n > 0) (63) 

where the latter equation actually defines the distribution g,(x), and where the 
corresponding ground-state relation between S°(z) and go(x) is given by Eq. (58). 
By inserting these expansions into Eq, (60) for the energy and simplifying, 
one is able to derive the normal mode expansion of Eq. (61) for the NCCM 
case, namely that (]HI) = E0; (t/-][n> = <n ]/t[) = ([/ t[nm) = 0 -  <mnlR[>; 
<rn IRln] -- e,,6~,,. 

Our basic goat is now" to consider arbitrary (i.e., non-infinitesimal) deviations 
away from equilibrium. Thus, we continue to use the parametrization of Eq. (62) 
but no longer restrict ourselves to {~,, ~, } being infinitesimal. The procedure is 
simply to insert Eq. (62) into the average value functional for the Hamiltonian 
from Eq. (57). The analysis, in principle, is completely straightforward. Suffice it 
to say that an arbitrary matrix element in Eq. (61) can be generated by modest 
effort and given in the form of convergent integrals. As examples we just mention 
the results for the third order matrix elements, of which 
<lmnl~ql> = (lmllV[n) =-0 (since in the NCCM the expectation value is linear in 
the amplitudes S), and the remaining ones are: 

([H[lmn) NccM= -(5, + e m + e.) f ~  ~ P°F(q)Sl(iq)Sm(iq)~q.(iq)F°(iq), (64) 

<IIJqImn)NCCM=(e+--~,, -e,,) f/+ ~ FIF(q),qm(iq)S.(iq)F°(iq). (65) 

In these equations 
g,(z) = F'(z) /F°(z). 

It is characteristic that up to third order the matrix elements can be given merely 
in terms of the holomorphic wave functions and the excitation energies. From 
fourth order, however, one obtains expressions from which the potential U 
cannot be eliminated. 

The case of the ECCM is more complicated. The basic amplitudes are first 
expanded as below: 

Z(z) = Z°(z) + ~ [0.G.+(z) + ~.~:(z)l, 
t t = l  

(66) 
Z(z) = Z°(z) + ~ [O.a+(z) + gT.~;(z)], 

from which the coefficients of the canonical transformation can be again spelled 
out. We find that: 

~r+. (z) = t+_ dx (e :'~ - 1)[S°°(x)g.(x) + ~°"(x)go(x)], 

(67) 

~2 (z) = [ dx (e ~ - 1)~"°(x)go(x). 
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where the functions g.(x) are as defined by Eq. (63). The other coefficients are: 

5 + (z) ~q°"(z) " ~'°(z) (68) 
- ~OO(z ) , ~ 2  ( z )  = ,2OO(z ) . 

To proceed further one has to express the NCCM amplitudes S(x), ~F(q), 
g(x) and S(z), appearing in Eq. (60) for the energy, in terms of the ECCM 
amplitudes in Eq. (66). The connection is nonlinear. We obtain: 

~(x) = S°°(x)exp{ .=1 ~ [O~5+(x) + ~.52(x)]};  (69) 

and the higher-order terms in the expansion of ~e(q) are obviously rather 
complicated integrals. Also: 

g(x) =go(x)(l + Z)  e - z  + e - z  ~, O,g.(x), (70) 
n=l 

where Z -  5~f(x) = y'2=l(ql.5+n + ~.52) .  From these equations and the defin- 
ition of Eq. (58), we obtain S(z) as a nonlinear expansion of the coordinates 
{0°, 

The evaluation of the individual matrix elements of the ECCM Hamiltonian 
is now quite laborious. Nevertheless, the lowest-order matrix elements up to 
third order are again rather straightforward. The results are: 

<lmn[n[> Ecc~ = - ( ~ t  + ~,. + e.) ax  S°°(x)go(x)5 i- (X)Sm(X)52(X); (71) 
c~  

( lm lFI In> ~ c c ~  = (~,, - e, - ~..) ,ix ~°°(x)5? (x)SL(x)[go(x)5+(x) + g.(x)l; 
o o  

(72) 

= <ll B Inn  >NCCM + (e,. + e. -- 8,) 1-o~ dx  ~q°°(x)~; (x) (l[ /7 Im. )ECCM 

x [go(x)5+~(x)5+(x) +g.l(x)5+~(x) +g.(x)5~(x)]; (73) 

<[Rllmn> zccM --- <[Rl tmn> NccM + (e, + ~'m ~, ~n) f ~ dx S°°(x) 

x [g0(x)c?[ (x)5+m (x)5+~ (x) + gt(x)5+m (X)5+~ (X) 

+ g,.(x)5[ (x)5 + (x) + g.(x)5[  (x)8 + (x)]. (74) 

Higher-order matrix elements are more complicated to determine. Neverthe- 
less it is evident that any desired coefficient can be evaluated with finite effort. All 
functions appearing in the above expressions are qualitatively well known, and 
all integrals can be readily proven to converge. Thus we have been able to carry 
through the CC programmes up to the point of deriving the diagonalized 
mapped classical NCCM and ECCM Hamiltonians. However, because of the 
drastic simplicity of the model field theory in the present case, the derived 
expansions are otherwise not intrinsically very interesting. The expansions 
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derived in this Section around the ground state are not yet sufficient to unravel 
the global structure of the NCCM or ECCM phase spaces. Although it would 
take us too far afield to attempt' an explicit construction in this paper, it is worth 
mentioning that the method of diagonalizing the second-order displacements of 
the classical/q can be applied around an essentially arbitrary point in the Hilbert 
space. The geometrical connections between the local parametrizations for 
neighbouring points would shed further light into this problem and allow a more 
careful study of such concepts as the phase portraits or energy surfaces in the CC 
phase space, for example. We believe that the most significant aspect of the 
present problem is the very existence of the CC phase spaces, a fact that has not 
so far been proven for any Hilbert space of infinite dimensionality, and the 
possible promises in implementing the methods developed here for other more 
realistic problems in field theory and many-body theory. 

6. Summary 

We have seen in the previous history of the coupled cluster methods a wealth of 
successful applications to many-body problems in both physics and chemistry as 
well as to problems in field theories. The practical complexity of all such 
applications to realistic systems has diverted interest away from the fundamental 
mathematical concepts towards more practical computational aspects. It is clear 
that for finite Hilbert spaces the CC amplitudes and thus the CC phase spaces 
definitely exist. To our knowledge the present investigation (together with Ref. 
[10]) is the first to prove rigorously the existence of the NCCM and ECCM 
phase spaces for a nontrivial infinite Hilbert space. 

In conclusion, it is clear that the holomorphic representation is a very 
powerful tool in the consideration of rather formal questions of fundamental 
importance. It may also be of much more practical use in actual physical or 
chemical applications. For example, another feature that we have not stressed in 
the present paper, but which should be apparent to the reader, is that the 
holomorphic representation also enables us to provide a completely algebraic 
description of all aspects of all three of the independent-cluster parametrizations, 
namely those of the CIM, NCCM and ECCM. One obvious example of this 
algebraization is the topological connectivity properties of the various terms or 
diagrams that each parametrization provides for the expectation values of the 
Hamiltonian and other operators. In particular, the specific linked and double- 
linked properties of the NCCM and ECCM diagrams respectively [3-5] can be 
put onto a completely rigorous algebraic footing. The existence of such tech- 
niques, which we have more fully explored elsewhere [9, 10], may also be of 
practical significance in later applications to realistic systems. 
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